Journal of Fish Biology, cilt.102, sa.4, ss.816-828, 2023 (SCI-Expanded)
© 2023 Fisheries Society of the British Isles.The molecular characteristics and tissue disruption of 10 fatty acid–binding protein (fabp) genes in gilthead seabream (Sparus aurata) were investigated, and their expression levels were found in the fish fed diets with different vegetable oil (VO) sources, which may explore the potential function of fabp genes in S. aurata. For this purpose, the open reading frames of fabp genes involved in the transport and ß-oxidation of fatty acids (FA) were molecularly cloned and characterized. S. aurata was then exposed to a two-staged feeding trial (the grow-out period following a wash-out period) at low water temperatures. In the grow-out period, the fish were fed diets containing 50% and 100% ratios of various VOs for 60 days, and in the wash-out period, the fish were fed a diet containing 100% fish oil (FO) for 30 days. It has been determined that (a) S. aurata and vertebrate fabp/FABP genes are orthologues; (b) spatio-temporal differences in tissue-specific patterns of fabp genes differ importantly; for instance, the difference between the highest and lowest values reaches 13 × 105-fold in the fabp10a; and (c) VO-based diets upregulated fabp transcript levels in the liver and muscle with some exceptions, such as liver fabp11a and muscle fabp7a. Gene expressions of only the hepatic fabp7b and fabp10a genes were diminished at the end of the wash-out period. In this study, the authors provide further evidence that dietary FAs affect fabp mRNA expressions in S. aurata. This might be useful in the nutritional control of fabp genes to maintain lipid homeostasis in marine fish fed VO-based diets at low water temperatures.