Investigation of the Convective Mass Transfer Characteristics in a Parallel-Plate Channel Flow Disturbed by Using a Selenoid Pulse Generator


Creative Commons License

Arzutuğ M. E.

Processes, cilt.13, sa.6, ss.1-21, 2025 (Scopus)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 13 Sayı: 6
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/pr13061700
  • Dergi Adı: Processes
  • Derginin Tarandığı İndeksler: Scopus, INSPEC, Other Indexes
  • Sayfa Sayıları: ss.1-21
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Atatürk Üniversitesi Adresli: Evet

Özet

 The continuous change in the entrance cross-section of a parallel-plate flow channel generally affects the mass and heat transfer on the walls of the channel. In this paper, an electrochemical parallel-plate flow channel equipped with a selenoid pulse generator has been developed to enhance the convective mass transfer on the walls of a masstransfer flowsystemsuchasanelectrodeposition cell, absorption column, flow reactor, etc. A number of experimental studies have been conducted to determine the distribution of the mass transfer coefficients on the bottom wall of a parallel-plate channel for the flow conditions with/without a pulse in the research. Here, the distribution of the convective mass transfer coefficients has been determined by the electrochemical limiting diffusion current technique (ELDCT) using nickel local cathodes arranged on the bottom surface of the flow channel. The experimental results show the effects of the parameters used, which are the flow Reynolds number, opened/closed (OP/CL) ratio, and pulse number, on the distribution of mass transfer coefficients. The results have revealed that the pulse generator altered the flow structure and increased the turbulent intensity at Re < 2860 flow conditions. Within the range of Reynolds number 950 < Re < 2860, the mass transfer correlation was given as Sh = 67.02Re0.897 Op Cl −0.059Sc1/3. According to the research findings, the highest kM values were obtained at Re = 2860 with an (OP/CL) ratio of 1/2. If a parallel-plate flow reactor with a pulse generator is designed using these flow conditions, it will yield a reactor that is both more efficient and more compact than a reactor without a pulse generator.