Microbiological quality of ready–to–eat vegetables salads served at meat restaurants under the COVID-19 in Turkey Calidad microbiológica de ensaladas de verduras listas para comer servidas en restaurantes de carne durante la pandemia de COVID-19 en Turquia


Creative Commons License

BARAN A., ADIGÜZEL M. C., AYDIN H.

Revista Cientifica de la Facultad de Veterinaria, cilt.32, 2022 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 32
  • Basım Tarihi: 2022
  • Doi Numarası: 10.52973/rcfcv-e32171
  • Dergi Adı: Revista Cientifica de la Facultad de Veterinaria
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, CAB Abstracts, Food Science & Technology Abstracts, Veterinary Science Database
  • Anahtar Kelimeler: E. coli, ESBL, Microbial, ready–to–eat salad, viruses
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Atatürk Üniversitesi Adresli: Evet

Özet

In Turkish cuisine, ready–to–eat vegetable salads (REVS) served with pide/lahmacun, kebab types, and tantuni from animal source in meat restaurants were evaluated since they have the potential to carry risks in terms of Public Health. The microbiological properties of REVS were investigated using agar plate method. Antimicrobial resistance of foodborne pathogens including Escherichia coli and Staphylococcus aureus was tested using Kirby–Bauer disc diffusion method. Moreover, the presence of important enteric viruses was detected by Polymerase Chain Reaction (PCR). The number of total aerobic bacteria, coliform bacteria, yeast and molds and, Staphylococcus and Micrococcus spp. ranged from less than 1 to 6.40, 1 to 6.26, less than 1–5.82 and less than 1–5.66 log10 colony forming units·grams-1 (CFU·g–1) in REVS samples, respectively. None of the REVS tested in this study contained Salmonella spp., whereas E. coli and S. aureus were isolated in 38.1% (16/42) and 2.4% (1/42), respectively. S. aureus was resistant to gentamicin, kanamycin, aztreonam, and ciprofloxacin in the disc diffusion assay, however, it was not harboring the mecA gene. E. coli strains (n=16) were resistant (100%) to aminoglycoside antibiotics and 35.7% (6/16) of the isolates were extended spectrum beta lactamase (ESBL) producing. blaTEM and blaCTXM8/25 were detected in two isolates, whereas one isolate carried blaCTXM–1 and blaTEM together by PCR. Of the REVS, two were evaluated as positive for rotavirus (4.8%), six for hepatitis A (14%), and hepatitis E virus (14%). These results indicate the high microorganism load, presence of ESBL E. coli, and viral enteric pathogens in REVS, hence it is important to perform routine hygiene practices.