Stereoselective synthesis of deoxycarbaheptopyranose derivatives: 5a-carba-6-deoxy-alpha-DL-galacto-heptopyranose and 5a-carba-6-deoxy-alpha-DL-gulo-heptopyranose


Kishali N., Dogan D., ŞAHİN E., Gunel A., KARA Y., Balci M.

TETRAHEDRON, cilt.67, sa.6, ss.1193-1200, 2011 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 67 Sayı: 6
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1016/j.tet.2010.11.102
  • Dergi Adı: TETRAHEDRON
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1193-1200
  • Anahtar Kelimeler: Cyclitol, Inositol, Heptopyranose, Carbasugar, Deoxycarbasugar, Carbapyranose, HETEROCYCLIC SILYLOXY DIENES, BASE-CATALYZED DECOMPOSITION, FACIAL SELECTIVITY, NORBORNYL ROUTE, SINGLET OXYGEN, PSEUDO-SUGARS, CARBA-SUGARS, GLUCOSIDASE INHIBITOR, MICROBIAL OXIDATION, BETA-D
  • Atatürk Üniversitesi Adresli: Evet

Özet

Two new deoxycarbaheptopyranoses, 5a-carba-6-deoxy-alpha-DL-galacto-heptopyranose and 5a-carba-6-deoxy-alpha-DL-gulo-heptopyranose were prepared starting from cyclohexa-1,4-diene. The addition of dichloroketene to cyclohexa-1,4-diene followed by the subsequent reductive elimination and Baeyer-Villiger oxidation in turn led to the formation of a bicyclic lactone. Reduction of the lactone moiety followed by acetylation gave a diacetate with cis-configuration. The introduction of additional acetate functionality into the molecule was achieved by singlet oxygen ene-reaction. The formed hydroperoxide was reduced and then acetylated. The triacetate was further functionalized either by direct cis-hydroxylation using OsO4 or by epoxidation followed by a ring-opening reaction to give the title heptopyranose derivatives. One of the synthesized molecules, galacto-heptopyranose exhibited enzyme specific inhibition against alpha-glycosidase. On the other hand, they did not show any inhibition for alpha-amylase. However, both compounds, gulo-heptopyranose and galacto-heptopyranose increased the activity of alpha-amylase. (C) 2010 Elsevier Ltd. All rights reserved.