Dissipation pattern and risk quotients assessment of amisulbrom in Korean melon cultivated in plastic house conditions


Kabir M. H., Abd El-Aty A. M., Rahman M. M., Chung H. S., Lee H. S., Park S., ...Daha Fazla

ENVIRONMENTAL MONITORING AND ASSESSMENT, cilt.189, sa.6, 2017 (SCI-Expanded) identifier identifier identifier

Özet

Amisulbrom formulated as suspension concentrate was applied at the rate recommended for Korean melon to determine the dissipation pattern (at two different sites), the pre-harvest residue limit (PHRL), and risk assessments. Samples collected over 10 days were extracted using liquid-liquid extraction (LLE) and cleaned up with solid-phase extraction (SPE) Florisil cartridge. Residual concentrations were determined using liquid chromatography-ultraviolet detector (LC-UVD) and confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The standard showed good instrument response linearity with a correlation coefficient (R-2) = 0.9999, and the recovery ranged from 87.5 to 93.7%. The dissipation half-life calculated from two different sites were found to be 7.0 and 8.8 days for sites 1 and 2, respectively. A PHRL graph constructed from the data indicated that if the residue levels were less than 0.55-0.59 mg/kg 3 days before harvest or less than 0.61-0.74 mg/kg 7 days before harvest, then they would be lower than the maximum residue limits (MRLs) at harvest. Risk assessments showed that the risk quotient (RQ) was 4.39-3.47% at 0 day, declined to 1.53-1.63% at 10 days. Therefore, the current data indicate that the amisulbrom can be applied safely to Korean melon; hence, it is unlikely to induce adverse health effects in consumers.