STRONG AND Delta-CONVERGENCE THEOREMS IN HYPERBOLIC SPACES


GÜNDÜZ B., AKBULUT S.

MISKOLC MATHEMATICAL NOTES, cilt.14, sa.3, ss.915-925, 2013 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 3
  • Basım Tarihi: 2013
  • Doi Numarası: 10.18514/mmn.2013.782
  • Dergi Adı: MISKOLC MATHEMATICAL NOTES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.915-925
  • Atatürk Üniversitesi Adresli: Evet

Özet

In this paper, we prove some strong and Delta-convergence theorems for two finite families of nonexpansive maps on a hyperbolic space. Our iterative scheme is independent and simpler than the Ishikawa type iteration process. Our results refine and generalize several recent and comparable results in uniformly convex Banach spaces as well as CAT(0) spaces.