Triplet Distribution in a Symmetrical Zinc(II) Porphyrin-BODIPY Pentameric Array


Bozdemir Ö. A., Gultekin D., Harriman A.

Journal of Physical Chemistry A, cilt.124, sa.51, ss.10736-10747, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 124 Sayı: 51
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1021/acs.jpca.0c09243
  • Dergi Adı: Journal of Physical Chemistry A
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, Chemical Abstracts Core, Chimica, Compendex, Computer & Applied Sciences, EMBASE, INSPEC, MEDLINE
  • Sayfa Sayıları: ss.10736-10747
  • Atatürk Üniversitesi Adresli: Evet

Özet

© 2020 American Chemical Society.A symmetrical molecular array has been synthesized comprising a central zinc(II) 5,10,15,20-tetraphenylporphyrin with identical boron dipyrromethene (BODIPY) units appended at each of the meso sites. Excitation of any subunit causes a cascade of electronic energy-transfer steps, ultimately leading to the BODIPY triplet-excited state in high yield. Coincidentally, the triplet energy levels of the zinc(II) porphyrin and BODIPY appendage are closely balanced such that an equilibrium is established at both 77 K and room temperature. This fast equilibration allows global distribution of the triplet exciton around the array, leading to a significantly increased capture volume for bimolecular quenching and a substantial increase in the rate constant for bimolecular triplet-triplet annihilation. The corresponding free-base porphyrin analogue does not favor triplet exciton decentralization because of the large disparity in the electronic energy levels.