On Relation between Analytic and Univalent Functions Defined by Close-to P Class with the Function Belonging to S Class


YILDIZ İ., UYANIK N., Albayrak H., Ay H.

International Conference on Functional Analysis in Interdisciplinary Applications (FAIA), Astana, Kazakistan, 2 - 05 Ekim 2017, cilt.1880, (Tam Metin Bildiri) identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası: 1880
  • Doi Numarası: 10.1063/1.5000614
  • Basıldığı Şehir: Astana
  • Basıldığı Ülke: Kazakistan
  • Atatürk Üniversitesi Adresli: Evet

Özet

The Weierstrass's associated function is not elliptic but it is of great use in developing the theory of elliptic function. The Zeta function is defined by the double series Sigma(m)'Sigma(m)''{1/z-W-mn + 1/W-mn + z/W-mn(2)}, where W-mn = 2m omega(1) + 2n omega(2) and m, n are integers, not simultaneously zero; the summation Sigma(m)'Sigma(m)''{1/z-W-mn + 1/W-mn + z/W-mn(2)} extends overall integers, not simultaneously. Which W-mn are Lattice points. Evidently W-mn are simple poles of zeta(z) and hence the function is meromorphic in