Environmental Toxicology, cilt.39, sa.5, ss.3264-3273, 2024 (SCI-Expanded)
Bisphenol A (BPA) is a substance that can harm the environment and human health by interfering with the normal functioning of the body's hormonal system. It is commonly found in various plastic-based products such as cosmetics, canned foods, beverage containers, and medical equipment and as well as it can also be absorbed by inhalation. There have been limited studies on the effects of BPA on lung fibroblasts, and it is still unclear how high levels of BPA can impact respiratory system cells, particularly the lungs and trachea. In this research, we aimed to investigate the cell cycle disruption potential of BPA on respiratory system cells by examining healthy trachea and lung cells together for the first time. The findings indicated that BPA exposure can alter the healthy cells' morphology, leading to reduced cellular viability that has been assessed by MTT and SRB assays. BPA treatment was able to activate caspase3 as expected, which could cause apoptosis in treated cells. Although the highest dose of BPA did not increase the apoptotic rate of rat trachea cells, it remarkably caused them to become necrotic (52.12%). In addition to quantifying the induction of apoptosis and necrosis by BPA, cell cycle profiles were also determined using flow cytometry. Thereby, BPA treatment unexpectedly inhibited the cell cycle's progression by causing G2/M cell cycle arrest in both lung and tracheal cells, which hindered cell proliferation. The findings of the study suggested that exposure to BPA could lead to serious respiratory problems, even respiratory tract cancers via alterations in the cell cycle.