Kyungpook Mathematical Journal, cilt.63, sa.1, ss.79-95, 2023 (ESCI)
In this note, we define a Berger type deformed Sasaki metric as a natural metric on the second tangent bundle of a manifold by means of a biparacomplex structure. First, we obtain the Levi-Civita connection of this metric. Secondly, we get the curvature tensor, sectional curvature, and scalar curvature. Afterwards, we obtain some formulas characterizing the geodesics with respect to the metric on the second tangent bundle. Finally, we present the harmonicity conditions for some maps