Protective Effects of Syringic Acid Against Oxidative Damage, Apoptosis, Autophagy, Inflammation, Testicular Histopathologic Disorders, and Impaired Sperm Quality in the Testicular Tissue of Rats Induced by Mercuric Chloride


AKARSU S. A., GÜR C., KÜÇÜKLER S., Akaras N., İLERİTÜRK M., Kandemir F. M.

Environmental Toxicology, cilt.39, sa.10, ss.4803-4814, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 39 Sayı: 10
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1002/tox.24395
  • Dergi Adı: Environmental Toxicology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, MEDLINE, Pollution Abstracts, Veterinary Science Database
  • Sayfa Sayıları: ss.4803-4814
  • Anahtar Kelimeler: apoptosis, inflammation, mercury chloride, oxidative stress, syringic acid
  • Atatürk Üniversitesi Adresli: Evet

Özet

Mercury (Hg) is one of the most toxic heavy metals that damage testicular tissue. Mercury chloride (HgCl2) is one of the most toxic forms of mercury that can easily cross biological membranes. Syringic acid (SA) is a natural flavonoid found in many vegetables and fruits. In this study, the effects of SA against HgCl2-induced testicular damage in rats were determined by biochemical, histopathological, and spermatological analyses. For this study, a total of 35 Spraque Dawley rats were used. Rats were divided into five groups as control, HgCl2, SA 50, HgCl2 + SA 25, and HgCl2 + SA 50. HgCl2 was administered intraperitoneal (IP) at a dose of 1.23 mg/kg/bw, while SA was administered by oral gavage at doses of 25 and 50 mg/kg/bw. The rats were then sacrificed, and testicular tissues were removed. HgCl2 caused an increase in MDA level and a decrease in SOD, CAT, and GPx activity and GSH level in the testicular tissue of rats. HgCl2 is involved in the increase of eIF2-α, PERK, ATF-4, ATF-6, CHOP, NF-κB, TNF-α, IL-1β, Apaf-1, Bax, and Caspase-3 mRNA expression. HgCl2 caused a decrease in sperm motility, an increase in the rate of abnormal sperm and sperm DNA fragmentation in rats. However, SA oral administration dose-dependently inhibited endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis and preserved epididymal sperm quality and testicular histoarchitectures. In conclusion, SA had protective effects against HgCl2-induced testicular oxidative damage, inflammation, endoplasmic reticulum stress, and apoptosis.