Synthetic mechanism of octenyl succinic anhydride modified corn starch based on shells separation pretreatment


Gao W., Sui J., Liu P., Cui B., Abd El-Aty A. M.

International Journal of Biological Macromolecules, cilt.172, ss.483-489, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 172
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1016/j.ijbiomac.2021.01.082
  • Dergi Adı: International Journal of Biological Macromolecules
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, INSPEC, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.483-489
  • Anahtar Kelimeler: Synthetic mechanism, Octenyl succinic anhydride, Shells separation pretreatment
  • Atatürk Üniversitesi Adresli: Evet

Özet

© 2018 Elsevier B.V.Herein, the synthetic mechanism of octenyl succinic anhydride (OSA) modified corn starch (OSCS) and granule shells (OSCs) based on shells separation pretreatment (SSP) was investigated. High intensity peaks around 1720 and 1570 cm−1 were observed for OSCs in Fourier transform infrared (FTIR) spectra after SSP. OSCs showed higher degree of substitution (DS) values (ranging from 0.128 to 0.170) than OSCS (0.121) determined by 1H NMR. The average molecular weight (Mw) of OSA modified CS decreased, due to the introduction of OS groups. X-ray diffraction (XRD) indicated that esterification mainly took place in the amorphous regions of starch granules. X-ray photoelectron spectroscopy (XPS) revealed that a new peak corresponding to 1s orbital electrons of Na was obtained due to the introduction of OSA molecules. Meanwhile, lower surface DS and higher fluorescence intensity were noticed for OSCs. Conclusively, SSP would significantly increase the reaction efficiency of OSA modification process of CS.