Neuromuscular and Kinetic Adaptations to Symmetric and Asymmetric Load Carriage During Walking in Individuals with Chronic Low Back Pain


Tajik R., Dhahbi W., Mimar R., Khaleghi Tazji M., CEYLAN H. İ., Bayrakdaroğlu S., ...Daha Fazla

Bioengineering, cilt.13, sa.1, 2026 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 13 Sayı: 1
  • Basım Tarihi: 2026
  • Doi Numarası: 10.3390/bioengineering13010082
  • Dergi Adı: Bioengineering
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, INSPEC, Directory of Open Access Journals
  • Anahtar Kelimeler: biomechanical phenomena, electromyography, gait analysis, lumbosacral region, motor activity, musculoskeletal equilibrium, postural control, weight-bearing
  • Atatürk Üniversitesi Adresli: Evet

Özet

Aim: This study examined how load size and symmetry affect trunk muscle activation patterns, vertical ground reaction forces, and estimated lumbar spine compression during overground walking in individuals with chronic low back pain (CLBP) and those without symptoms. Methods: Thirty male participants (15 with CLBP, 15 controls; ages 23–28 years) performed walking tests under four load conditions: symmetric and asymmetric carriage at 10% and 20% of body weight. Bilateral surface electromyography measured activation from seven trunk muscles (rectus abdominis, external oblique, internal oblique, latissimus dorsi, lumbar erector spinae, multifidus) and the thoracolumbar fascia region, normalized to maximum voluntary isometric contractions (%MVIC). Force plates recorded vertical ground reaction forces synchronized with heel-strike events. A repeated-measures ANOVA with Bonferroni corrections was used to analyze the effects of load configuration and magnitude. Results: Asymmetric loading at 20% body weight caused significantly higher peak vertical ground reaction forces compared to symmetric loading (mean difference = 47.3 N, p < 0.001), with a significant interaction between load magnitude and configuration (p = 0.004, ηp2 = 0.26). Participants with CLBP showed consistently higher trunk muscle activation throughout the gait cycle (peak: 37% MVIC vs. 30% MVIC in controls; p < 0.001, d = 1.68), with maximum recruitment at shorter muscle lengths and 24% less activation at optimal length (95% CI: 18.2–29.8%). The lumbar erector spinae and multifidus muscles exhibited the highest activation during asymmetric 20% loading in CLBP participants (0.282 and 0.263%MVIC, respectively), indicating compensatory neuromuscular strategies. Conclusion: Asymmetric load carriage creates disproportionately high mechanical and neuromuscular demands, effects that are greatly amplified in individuals with CLBP. These findings support rehabilitation strategies that improve load distribution and restore motor control, thereby reducing compensatory strain and enhancing trunk stability.