Applied Mathematics and Nonlinear Sciences, cilt.5, sa.1, ss.461-474, 2020 (ESCI)
The purpose of this study is extended the TOPSIS method based on interval-valued fuzzy set in decision analysis. After the introduction of TOPSIS method by Hwang and Yoon in 1981, this method has been extensively used in decision-making, rankings also in optimal choice. Due to this fact that uncertainty in decision-making and linguistic variables has been caused to develop some new approaches based on fuzzy-logic theory. Indeed, it is difficult to achieve the numerical measures of the relative importance of attributes and the effects of alternatives on the attributes in some cases. In this paper to reduce the estimation error due to any uncertainty, a method has been developed based on interval-valued fuzzy set. In the suggested TOPSIS method, we use Shannon entropy for weighting the criteria and apply the Euclid distance to calculate the separation measures of each alternative from the positive and negative ideal solutions to determine the relative closeness coefficients. According to the values of the closeness coefficients, the alternatives can be ranked and the most desirable one(s) can be selected in the decision-making process.