Uniform Boundedness of Kantorovich Operators in Variable Exponent Lebesgue Spaces


AYAZOĞLU R., AKBULUT S., AKKOYUNLU E.

FILOMAT, cilt.33, sa.18, ss.5755-5765, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 33 Sayı: 18
  • Basım Tarihi: 2019
  • Doi Numarası: 10.2298/fil1918755a
  • Dergi Adı: FILOMAT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.5755-5765
  • Atatürk Üniversitesi Adresli: Evet

Özet

In this paper, the Kantorovich operators K-n, n is an element of N are shown to be uniformly bounded in variable exponent Lebesgue spaces on the closed interval [0, 1]. Also an upper estimate is obtained for the difference K-n(f) - f for functions f of regularity of order 1 and 2 measured in variable exponent Lebesgue spaces, which is of interest on its own and can be applied to other problems related to the Kantorovich operators.