Regulatory Toxicology and Pharmacology, cilt.161, 2025 (SCI-Expanded)
Colemanite (COL), a boron-containing mineral, has shown potential therapeutic applications, particularly in the fields of drug delivery and bone health. However, despite its promising bioactive properties, there is a lack of comprehensive toxicological data on its safety, especially regarding its potential medical use. Previous studies have primarily focused on its industrial applications, with limited investigation into its biological effects. This gap in knowledge prompted the current study, which aimed to investigate the subacute toxicity of colemanite in rats using behavioral, hematological, biochemical, genotoxic, and histopathological analyses. Over a 7-day period, rats were treated with doses of 10, 30, and 300 mg/kg. Behavioral assessments, including locomotor activity and elevated plus maze tests, indicated enhanced exploratory behaviors, indicating heightened curiosity or activity and no alterations in motor coordination or anxiety-like behaviors. Hematological findings revealed dose-dependent reductions in hematocrit, hemoglobin, and red blood cell counts, while biochemical analyses showed elevated aspartate aminotransferase, lactate dehydrogenase, and cholesterol levels at higher doses, suggesting hepatotoxicity and lipid metabolism disruption. Genotoxicity analysis demonstrated increased micronucleus formation at 30 and 300 mg/kg, indicative of chromosomal instability possibly linked to oxidative stress. Histopathological evaluations revealed mild hepatocyte degeneration and hyperemia in the liver and brain tissues at the highest dose. Importantly, no significant toxic effects were observed at the 10 mg/kg dose. These findings highlight the dose-dependent toxicity of colemanite, with low doses exhibiting a favorable safety profile. This study underscores the need for dose optimization and further research to elucidate the molecular mechanisms underlying colemanite's toxicological effects, including its impact on various organs over both short-term and long-term exposures. Additionally, future studies should focus on assessing the human relevance of these effects to ensure its safe and effective therapeutic application.