A Facile Synthesis of MPd (M = Co, Cu) Nanoparticles and Their Catalysis for Formic Acid Oxidation


Mazumder V., CHI M., Mankin M. N., Liu Y., Metin O., SUN D., ...Daha Fazla

NANO LETTERS, cilt.12, sa.2, ss.1102-1106, 2012 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 2
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1021/nl2045588
  • Dergi Adı: NANO LETTERS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1102-1106
  • Anahtar Kelimeler: Bimetallic nanoparticles, Pd-based nanoparticles, size and composition control, formic acid oxidation, catalysis, AMBIENT CONDITIONS, PD, HYDROGENATION
  • Atatürk Üniversitesi Adresli: Evet

Özet

Monodisperse CoPd nanoparticles (NPs) were synthesized and studied for catalytic formic acid (HCOOH) oxidation (FAO). The NPs were prepared by coreduction of Co(acac)(2) (acac = acetylacetonate) and PdBr2 at 260 degrees C in oleylamine and trioctylphosphine, and their sizes (5-12 nm) and compositions (Co10Pd90 to Co60Pd40) were controlled by heating ramp rate, metal salt concentration, or metal molar ratios. The 8 nm CoPd NPs were activated for HCOOH oxidation by a simple ethanol wash. In 0.1 M HClO4 and 2 M HCOOH solution, their catalytic activities followed the trend of Co50Pd50 > Co60Pd40 > Co10Pd90 > Pd. The Co50Pd50 NPs had an oxidation peak at 0.4 V with a peak current density of 774 A/g(Pd). As a comparison, commercial Pd catalysts showed an oxidation peak at 0.75 V with peak current density of only 254 A/g(Pd). The synthesis procedure could also be extended to prepare CuPd NPs when Co(acac)(2) was replaced by Cu(ac)(2) (ac = acetate) in an otherwise identical condition. The CuPd NPs were less active catalysts than CoPd or even Pd for FAO in HClO4 solution. The synthesis provides a general approach to Pd-based bimetallic NPs and will enable further investigation of Pd-based alloy NPs for electro-oxidation and other catalytic reactions.