Acetylphenyl-substituted imidazolium salts: synthesis, characterization, in silico studies and inhibitory properties against some metabolic enzymes


Creative Commons License

Demirci Ö., TEZCAN B., Demir Y., Taskin-Tok T., GÖK Y., AKTAŞ A., ...Daha Fazla

Molecular Diversity, cilt.27, sa.6, ss.2767-2787, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 27 Sayı: 6
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s11030-022-10578-3
  • Dergi Adı: Molecular Diversity
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, Chemical Abstracts Core, EMBASE, MEDLINE
  • Sayfa Sayıları: ss.2767-2787
  • Anahtar Kelimeler: Acetylcholinesterase, Acetyl group, ADMET, Carbonic anhydrase, Imidazolium salt, Molecular docking, N-HETEROCYCLIC CARBENES, CARBONIC-ANHYDRASE I, BIOLOGICAL EVALUATION, ACETYLCHOLINE ESTERASE, BENZIMIDAZOLIUM SALTS, CRYSTAL-STRUCTURE, HCA I, DERIVATIVES, BUTYRYLCHOLINESTERASE, ANTIOXIDANT
  • Atatürk Üniversitesi Adresli: Evet

Özet

© 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.Herein, we present how to synthesize thirteen new 1-(4-acetylphenyl)-3-alkylimidazolium salts by reacting 4-(1-H-imidazol-1-yl)acetophenone with a variety of benzyl halides that contain either electron-donating or electron-withdrawing groups. The structures of the new imidazolium salts were conformed using different spectroscopic methods (1H NMR, 13C NMR, 19F NMR, and FTIR) and elemental analysis techniques. Furthermore, these compounds’ the carbonic anhydrase (hCAs) and acetylcholinesterase (AChE) enzyme inhibition activities were investigated. They showed a highly potent inhibition effect toward AChE and hCAs with Ki values in the range of 8.30 ± 1.71 to 120.77 ± 8.61 nM for AChE, 16.97 ± 2.04 to 84.45 ± 13.78 nM for hCA I, and 14.09 ± 2.99 to 69.33 ± 17.35 nM for hCA II, respectively. Most of the synthesized imidazolium salts appeared to be more potent than the standard inhibitor of tacrine (TAC) against AChE and Acetazolamide (AZA) against CA. In the meantime, to prospect for potential synthesized imidazolium salt inhibitor(s) against AChE and hCAs, molecular docking and an ADMET-based approach were exerted. Graphical Abstract: [Figure not available: see fulltext.]