Accumulation Potential of Lead and Cadmium Metals in Maize (<i>Zea mays</i> L.) and Effects on Physiological-Morphological Characteristics


Creative Commons License

Elik U., GÜL Z.

LIFE-BASEL, cilt.15, sa.2, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 2
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/life15020310
  • Dergi Adı: LIFE-BASEL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED)
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Atatürk Üniversitesi Adresli: Evet

Özet

Phytoremediation stands at the forefront of modern environmental science, offering an innovative and cost-effective solution for the remediation of heavy-metal-contaminated soils through the natural capabilities of plants. This study aims to investigate the effects of lead (Pb) and cadmium (Cd) metals on plant growth (e.g., seedling height, stem diameter, fresh and dry weight), physiological properties (e.g., tissue relative water content, tissue electrical conductivity), and biochemical parameters (e.g., chlorophyll content, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) enzyme activities) of maize compared to the control group under greenhouse conditions at the Atat & uuml;rk University Plant Production Application and Research Center. The results show that plant height decreased by 20% in the lead (Pb3000) application and by 42% in the cadmium (Cd300) application compared to the control group. The highest Pb dose (Pb3000) caused a 15% weight loss compared to the control, while the highest Cd dose (Cd300) caused a weight loss of 63%. The accumulation rates of heavy metals in soil, roots, and aboveground parts of plants indicated that maize absorbed and accumulated more Cd compared to Pb.