Salmon protein gel enhancement for dysphagia diets: Konjac glucomannan and composite emulsions as texture modifiers


Fei S., Li Y., Liu K., Wang H., HASSIBELNABY A. M. A., Tan M.

International Journal of Biological Macromolecules, cilt.258, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 258
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.ijbiomac.2023.128805
  • Dergi Adı: International Journal of Biological Macromolecules
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, INSPEC, Veterinary Science Database
  • Anahtar Kelimeler: Composite emulsion gels, Dysphagia, Konjac glucomannan, Rheological properties, Salmon
  • Atatürk Üniversitesi Adresli: Evet

Özet

The growing prevalence of dysphagia among the aging population presents a significant challenge. Many highly nutritious foods, like salmon, are often unsuitable for the elderly due to their firm texture when heated. To address this concern, a combination of salmon myofibrillar protein (SMP), Konjac glucomannan (KGM), and different emulsion fillers—such as oil droplets, octenyl succinic anhydride (OSA)-modified potato starch emulsion, and high methoxylated pectin (HMP) emulsions—was selected to enhance the network of salmon protein gels with the aims to create potential applications as dysphagia-friendly foods. The International Dysphagia Dietary Standardization Initiative (IDDSI) test indicated that all gel samples were classified as level 5. The OSA-SMP-KGM gel exhibited notably higher cohesiveness (P < 0.05), reduced adhesion, and enhanced mouthfeel. The OSA-SMP-KGM gel exhibited a smooth surface and excellent water retention (92.4 %), rendering it suitable for individuals with swallowing difficulties, particularly those prone to experiencing dry mouth. The yield stress of OSA-SMP-KGM gel was 594.14 Pa and stable structure was maintained during chewing and swallowing (γe/γv = 62.5). This study serves as a valuable reference for developing salmon-based products that are not only highly nutritious but also fulfill the criteria for a desirable swallowing texture.