Dynamic residual pattern of azoxystrobin in Swiss chard with contribution to safety evaluation


Farha W., Abd El-Aty A. M., Rahman M. M., Kabir M. H., Chung H. S., Lee H. S., ...Daha Fazla

BIOMEDICAL CHROMATOGRAPHY, cilt.32, sa.2, 2018 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 32 Sayı: 2
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1002/bmc.4092
  • Dergi Adı: BIOMEDICAL CHROMATOGRAPHY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Atatürk Üniversitesi Adresli: Evet

Özet

This study aimed at quantifying the residual amount of azoxystrobin in Swiss chard samples grown under greenhouse conditions at two different locations (Gwangju and Naju, Republic of Korea). Samples were extracted with acetonitrile, separated by salting out, and subjected to purification by using solid-phase extraction. The analyte was identified using liquid chromatography-ultraviolet detection. The linearity of the calibration range was excellent with coefficient of determination 1.00. Recovery at three different spiking levels (0.1, 0.5, and 4mg/kg) ranged between 82.89 and 109.46% with relative standard deviation <3. The limit of quantification, 0.01mg/kg, was considerably much lower than the maximum residue limit (50mg/kg) set by the Korean Ministry of Food and Drug Safety. The developed methodology was successfully used for field-treated leaves, which were collected randomly at 0-14days following azoxystrobin application. The rate of disappearance in/on Swiss chard was ascribed to first-order kinetics with a half-life of 8 and 5days, in leaves grown in Gwangju and Naju greenhouses, respectively. Risk assessments revealed that the acceptable daily intake percentage is substantially below the risk level of consumption at day 0 (in both areas), thus encouraging its safe consumption.