A variational technique for optimal boundary control in a hyperbolic problem


Subai M., Sara Y., Kaar A.

APPLIED MATHEMATICS AND COMPUTATION, cilt.218, sa.12, ss.6629-6636, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Derleme
  • Cilt numarası: 218 Sayı: 12
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1016/j.amc.2011.12.053
  • Dergi Adı: APPLIED MATHEMATICS AND COMPUTATION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.6629-6636
  • Atatürk Üniversitesi Adresli: Evet

Özet

We investigate the problem of controlling the boundary functions in a one dimensional hyperbolic problem by minimizing the functional including the final state. After proving the existence and uniqueness of the solution to the given optimal control problem, we get the Frechet differential of the functional and give the necessary condition to the optimal solution in the form of the variational inequality via the solution of the adjoint problem. We constitute a minimizing sequence by the method of projection of the gradient and prove its convergence to the optimal solution. (C) 2011 Elsevier Inc. All rights reserved.