On Knot Graphs


Uğur T., Şimşek H.

Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, cilt.18, ss.87-91, 2002 (Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18
  • Basım Tarihi: 2002
  • Doi Numarası: 10.1016/s0166-8641(01)00189-4
  • Dergi Adı: Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  • Derginin Tarandığı İndeksler: Scopus
  • Sayfa Sayıları: ss.87-91
  • Anahtar Kelimeler: clasp-pass move, delta move, spatial graph, FINITE-TYPE INVARIANTS, VASSILIEV INVARIANTS, EMBEDDINGS, HOMOLOGY
  • Atatürk Üniversitesi Adresli: Evet

Özet

A clasp-pass move is a local move on oriented links introduced by Habiro in 1993. He showed that two knots are transformed into each other by clasp-pass moves if and only if they have the same second coefficient of the Conway polynomial. We extend his classification to two-component links, three-component links, algebraically split links, and spatial embeddings of a planar graph that does not contain disjoint cycles. These are classified in terms of linking numbers, the second coefficient of the Conway polynomial, the Arf invariant, and the Milnor mu-invariant. (C) 2002 Elsevier Science B.V. All rights reserved.