EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGI ON CARBON DIOXIDE (CO<sub>2</sub>) AND WATER (H<sub>2</sub>O) EMISSIONS IN TURFGRASS SOIL UNDER DIFFERENT SALINITY IRRIGATION LEVELS


Boyno G., Yerli C., Çakmakcı T., ŞAHİN Ü., Demir S.

ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, cilt.22, sa.6, ss.1081-1090, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22 Sayı: 6
  • Basım Tarihi: 2023
  • Doi Numarası: 10.30638/eemj.2023.089
  • Dergi Adı: ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Environment Index, Greenfile, Pollution Abstracts, Veterinary Science Database
  • Sayfa Sayıları: ss.1081-1090
  • Anahtar Kelimeler: arbuscular mycorrhizal fungi, greenhouse gas, salinity, symbiosis, turfgrass
  • Atatürk Üniversitesi Adresli: Evet

Özet

Host plants inoculated with arbuscular mycorrhizal (AM) fungi are widely believed to tolerate stressful situations such as heat, salinity, drought, metals, and extreme temperatures. However, increased nutrient and/or water uptake by AM symbiosis may affect soil biochemical properties and emissions of the greenhouse gas carbon dioxide (CO2). Therefore, an experiment was designed to investigate the effect of AM fungi on CO2 and water (H2O) emissions in lawns. Three different AM fungi species were used in this experiment (Funneliformis mosseae, Claroideoglomus etunicatum and Rhizophagus irregularis). Turfgrass plants were grown in pots in mycorrhizal and non-mycorrhizal soils for ten weeks, and the plants were subjected to irrigation cycles with salted water at 0.6, 4.5, 6.0, and 7.5 dS m(-1) ratios. The effects of AM fungi and saline irrigation at different rates on CO2 and H2O emissions and their effects on plant morphological growth and AM fungi parameters were also evaluated. At the end of the experiment, it was seen that irrigations with different salt ratios affected AM fungi, which was negative as the salt ratio increased. Nevertheless, a symbiosis was established between the plant and the AM fungi. CO2 and H2O emissions and soil temperature decreased with mycorrhiza treatments and increased irrigation water salinity. In addition, it was determined that AM fungi increased plant growth under salt stress. Among the AM fungi species, especially C. Etunicatum was more successful.